Successful in global competition with high-performance injection moulds

integrat 4D
Close-to-cavity mould temperature control
The most important part in the process chain of producing plastic products is the injection mould. Nowadays, ordinary drilled cooling systems are hardly able to meet the requirements in terms of cycle time and quality.
The gwk integrat 4D system is the rational answer to the economic cooling process.

For technical parts, the cooling time is 2/3 of the overall cycle time, thus the largest cost-factor; therefore the greatest potential for rationalization lies in a correctly dimensioned cooling process.

Through close-to-cavity and segmented allocation of the cooling surfaces and the water quantities and temperatures necessary to do so it is possible to reach:
- the shortest cooling time
- the best possible mould quality
- a considerably reduced reject rate
- a stable production process
The closer the cooling channels are placed to the cavity and the more even the water distribution is realized, the more homogeneously heat can be transferred, which allows a faster cooling process. For technical parts, the gwk-system may decrease cooling time by ca. 30 - 50 %. As a result, the overall cycle time is reduced by between 20 - 30 %.

The largest benefits associated with this option of reducing cycle times while preserving or improving the moulded part quality are most likely the cost savings for injection moulding companies looking to lower their production costs.
gwk project schedule

<table>
<thead>
<tr>
<th>Analysis phase</th>
<th>Manufacture</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Determination of ACTUAL situation and task alignment</td>
<td>• Machining: Insertion of multidimensional cooling channels in the parting levels of the mould insert plates via CNC controlled processing centres (milling, turning, drilling, spark machining)</td>
</tr>
<tr>
<td>• Preparation of a project-specific mould and temperature control concept</td>
<td>• Materials: Blanks for the inserts are made of high-strength steel grades: 1.2343ESU (H11), 1.2344ESU (H13), M333 (Böhler), M340 (Böhler), W360 (Böhler), W400 (Böhler) and possibly SPM. The use of other steel grades is possible and needs to be tested for technical feasibility.</td>
</tr>
<tr>
<td>• Dimensioning and position of temperature control channels</td>
<td>• Roughing of mould insert: Pre-machining of contour in a non-hardened mould insert via 2D machining (stages) or via 3D processing as needed. Blank dimensions are determined in consultation with the customer.</td>
</tr>
<tr>
<td>• Determination of components for the temperature control concept</td>
<td>• Hybrid technology from gwk via heat transfer elements: Increase in heat transfer capacity by 15 to 20 times when compared to tool steels</td>
</tr>
<tr>
<td>• Analysis of costs and benefits</td>
<td>• Brazing technology: Following a special pre-machining process, the separate mould insert plates will be brazed by diffusion at their parting surfaces via a high-temperature vacuum process at the hardening temperature of the corresponding steel material in a structure-preserving manner. The strength, tenacity, and resistance to wear correspond to those of a mould insert manufactured using conventional processes.</td>
</tr>
<tr>
<td>• Description of project schedule</td>
<td>• Hardening / Tempering: Heat treatment of the mould inserts according to the steel specification for reaching the required hardness.</td>
</tr>
<tr>
<td>• Determination of budget</td>
<td>• Protection against corrosion of the cooling ducts: Optional special coating to prevent adverse effects due to corrosion regarding the thermal conductivity of the cooling channel surfaces.</td>
</tr>
</tbody>
</table>

Objectives:
- Exploitation of potential for thermal energy management in the mould
- Determination of suitable standards for mould temperature control
- Optimum part quality at short cycle time
- Increase in productivity due to reduced cooling time
- Minimisation of number of rejects and rework

Commercial coordination
- Preparation of a detailed quotation
- Coordination with customer
- Award of contract by customer

Customer approval
- Arrangement of cooling channels according to project study and structural design calculations
- Preparation of design drawings (cooling channel arrangements, dimensions of blank) and approval by customer

Manufacture
- Machining: Insertion of multidimensional cooling channels in the parting levels of the mould insert plates via CNC controlled processing centres (milling, turning, drilling, spark machining)
- Materials: Blanks for the inserts are made of high-strength steel grades: 1.2343ESU (H11), 1.2344ESU (H13), M333 (Böhler), M340 (Böhler), W360 (Böhler), W400 (Böhler) and possibly SPM. The use of other steel grades is possible and needs to be tested for technical feasibility.
- Roughing of mould insert: Pre-machining of contour in a non-hardened mould insert via 2D machining (stages) or via 3D processing as needed.
 Blank dimensions are determined in consultation with the customer.
- Hybrid technology from gwk via heat transfer elements: Increase in heat transfer capacity by 15 to 20 times when compared to tool steels
- Brazing technology: Following a special pre-machining process, the separate mould insert plates will be brazed by diffusion at their parting surfaces via a high-temperature vacuum process at the hardening temperature of the corresponding steel material in a structure-preserving manner. The strength, tenacity, and resistance to wear correspond to those of a mould insert manufactured using conventional processes.
- Hardening / Tempering: Heat treatment of the mould inserts according to the steel specification for reaching the required hardness.
- Protection against corrosion of the cooling ducts: Optional special coating to prevent adverse effects due to corrosion regarding the thermal conductivity of the cooling channel surfaces.
Road map for saving energy and boosting productivity

Quality tests

- Following the brazing process, each mould insert is tested for tightness (pressure test up to 20 bar) and flow (l/min) using a special test bench with results being documented.
- The brazed areas of each mould insert are checked for full surface bonding using an ultrasonic process with the results being documented.
- For checking the surface hardness of every insert, the Rockwell hardness test is used with the results being documented.
Cost-benefit-analysis

When projecting / optimizing moulds of an overall considered moulded part we conduct a cost-benefits analysis on the basis of our cooling time calculation and with regards to experience values.

In our analysis, the **gwk integrat 4D system** (close-to-cavity cooling channels) and the **segmented mould temperature control** of conventional technology are compared. The customer is shown the considerable potential for economization due to reduction of cooling time / quality improvement brought about by the **gwk integrat 4D system**.

The cost-benefits-analysis may also be conducted for individual critical areas to be optimized with close-to-cavity cooling channels. To do so, the remaining area processed with conventional drilled technology (according to our recommendation), must have sufficient temperature homogeneity (an even mould cavity temperature).

In practice:

Increased productivity through close-to-cavity mould temperature control – practical examples: Typical task for optimizing projects: • Lowering of warpage • Lowering of cooling time • Improvement of the surface quality • Reduction of rejects

Example 1: PA6 GF30 gearbox casing

Heat exchange surface in the fixed half:
- With conventional temperature control: 6.847 mm²
- With integrat 4D-temperature control: 19.016 mm²

Heat exchange surface in the moving half:
- With conventional temperature control: 6.253 mm²
- With integrat 4D-temperature control: 18.972 mm²

Cost-benefit-analysis:
- Additional costs: € 1.620
- Pay back: 2 months

Example 2: Transport trays for car keys made of ABS and TPE material

Result:
- Savings due to reduced cycle time: approx. 25%

Analysis of costs and benefits:
- Additional costs: € 52.000
- Savings: € 59.000 p.a.
- Amortisation period: 10 months
Increase of productivity through close-to-cavity mould temperature control

- **Reduce cycle time**
- **Minimize reject rates**
- **Improve parts quality**
- **Increase productivity**

Example 3:
PA6.6 GF35 carbon brush guide, produced with integrat 4D

Result: saving of cycle time: approx. 26%
Exactly reproducible, warp-free part quality

Gate bush with temperature control:
Separate temperature control circuit for the hot runner nozzles to control the gate area (frictional heat).

Mould Insert FH:
Two separate temperature control circuits per mould insert

Slide:
Separately controllable temperature control circuit

Mould Insert MH/FH:
Two close-to-cavity control of the mould wall temperature.
Installation of the largest possible heat exchange surface.

Individual design possibilities
Increased productivity
In many areas of the industry, cooling and temperature control provides a great potential for increasing productivity and thus for lowering costs.

Many factors serve to improve productivity:
- Reduction of cooling time, therefore savings in required machine hours
- Improvement of product quality
- Increasing availability of production plants
- Decreasing running cost
- Reduction of maintenance cost

Increased productivity

Cost reduction

Production costs

Perfect Cooling and Temperature Control

gwk

integrat vario
For complex injection moulding processes, teco vario wh offers a cyclic water-water mould wall temperature control system with water temperatures up to 200 °C.

integrat evolution
Dynamic mould cavity temperature control system using ceramic high-performance heaters

integrat 40/80/direct
Increase of productivity by means of specific and segmented mould temperature control.

gwk weco
The compact series with excellent price-performance ratio for the demanding plastics processor.

gwk protemp
High-performance temperature controller with increased flow rate and reduced energy consumption due to high quality stainless steel centrifugal pump.

gwk moldclean
Increased productivity through effective, automatically controlled cleaning of heat exchange surfaces in cooling and temperature controlled circuits.

gwk hermeticool hybrid
Innovative cooling system to decrease the running and maintenance cost in comparison to conventional cooling systems.

gwk service
Decreasing the maintenance cost and protection of company owned resources through professional execution of installation and maintenance works incl. cooling water treatment.

gwk
Gesellschaft Wärme Kältetechnik mbH
Scherl 10 · D-58540 Meinerzhagen
Tel. +49 2354 7060-0 · Fax +49 2354 7060-150
info@gwk.com · www.gwk.com

Member of the technotrans group